\qquad
\qquad

I_{T} in a Parallel Circuit

Follow these steps to find Total Current $\left(\mathrm{I}_{\mathrm{T}}\right)$

Going farther 5) Finding Total Resistance $\left(\mathbf{R}_{\mathbf{T}}\right)$

Once you know V_{T} and I_{T}, you can find R_{T} by Ohm's Law: If $\mathrm{V}=\mathrm{IR}$, then $\mathrm{R}=\mathrm{V} / \mathrm{I} . \quad \mathrm{R}=4 \mathrm{v} / 6 \mathrm{~A}=2 / 3 \Omega=0.67 \Omega$.

4) Find Total Current ($\mathbf{I}_{\mathbf{T}}$)

This equation gives us the same watts as $\mathrm{P}=\mathrm{W} / \mathrm{t}$. How? First you have to know that $\mathrm{V}=$ Joules/Coulomb and $\mathrm{I}=$ Coulombs/Second. Canceling out units gives us:

$$
\begin{aligned}
\mathrm{P} & =\mathrm{VI}=\frac{\text { Joules }}{\text { Coutombs }} \times \frac{\text { Coutombs }}{\text { Second }} \\
& =\frac{\text { Joules }}{\text { Second }}=\frac{\mathrm{W}}{\mathrm{~T}}=\text { Power }
\end{aligned}
$$

Fuses

Electricity cause heat.
Fuses melt (or break) when
 too much current passes through it, protecting expensive electronic equipment. Circuit breakers protect against too much current like fuses, but can be reset.

The electrons that move to make electricity come mostly from the wires in the circuit, not from the battery. Metals are conductors because their electrons can move.

Copyright © 2004, C. Stephen Murray
\qquad

Name: \qquad
\qquad

