Name: \qquad
\qquad

Total Voltage (V_{T})
If the batteries are in series (in a line) then add them together to find the total voltage $\left(\mathrm{V}_{\mathrm{T}}\right)$.

If the resistors are in series then add them together to find the total resistance $\left(\mathrm{R}_{\mathrm{T}}\right)$.

Total Current (I_{T})

Use Ohm's Law to calculate the total current from V_{T} and R_{T}.

Each resistor in a series circuit "uses" part of the energy of the circuit, reducing the voltage. Eventually the voltage is back to zero at the negative side of the battery. Then the battery energizes the electrons again.

Voltage Across a Resistor

Calculating Voltage over a particular resistor:

1) find the total current;
2) use Ohm's Law for that resistor.
$\mathbf{V}_{\mathbf{R X}}=\mathbf{I}_{\mathbf{T}} \mathbf{R}_{\mathbf{X}}$, where \mathbf{R}_{X} is a particular resistor.

A short-circuit is when a wire by-passes a device in a circuit.

Electricity always chooses the path of least resistance. Since wires have virtually no resistance, electricity will go thru a wire instead of a device or circuit. This causes a short-circuit.

Short-circuiting a device just by-passes it: it stays off. It is easier for the current to go thru the wire than the light bulb.

Short-circuiting a battery can be dangerous: it will drain the battery quickly and can lead to a melted wire or even a fire!

Name: \qquad
Period: \qquad
Find the following quantities:

Draw all circuits.

In the Lab

Circuit 1: battery; light bulb; green resistor; switch.

Notice how bright the light bulb is.
Circuit 2: battery; light bulb; red resistor; switch.

Compare the brightness of the light bulb to circuit 1 .
Which has more resistance the red or green resistor?

Circuit 3: battery; light bulb; blue resistor; switch.

Compare the brightness of the light bulb to circuit 1.
Which has more resistance the blue or red resistor?

Rank the three resistors from lowest to highest:

Use an ohm meter to check for the actual resistances:

Green: \qquad Red: \qquad ; Blue: \qquad

Circuit 4: 2 batteries; 2 light bulbs; switch.

CAUTION:

It is important that you are exact in how you do this next step: Short circuit one of the light bulb (NOT THE BATTERY).

What happens to that light bulb?

